Intel Management Engine Deep Dive

Peter Bosch

About me

Peter Bosch

- CS / Astronomy student at Leiden University
- Email : me@pbx.sh
- Twitter: @peterbjornx
- GitHub: peterbjornx
- <u>https://pbx.sh/</u>

About me

Previous work:

• CVE-2019-11098: Intel Boot Guard bypass through TOCTOU attack on the SPI bus (Co-discovered by @qrs)

Outline

- 1. Introduction to the Management Engine Operating System
- 2. The Management Engine as part of the boot process
- 3. Possibilities for opening up development and security research on the ME

Additional materials will be uploaded to <u>https://pbx.sh/</u> in the days following the talk.

About the ME

About ME

- Full-featured embedded system within the PCH
 - 80486-derived core
 - 1.5MB SRAM
 - 128K mask ROM
 - Hardware cryptographic engine
 - Multiple sets of fuses.
 - Bus bridges to PCH global fabric
 - Access to host DRAM
 - Access to Ethernet, WLAN
- Responsible for
 - System bringup
 - Manageability
 - KVM
 - Security / DRM
 - Boot Guard
 - fTPM
 - Secure enclave

About ME

- Only runs Intel signed firmware
- Sophisticated , custom OS
 - Stored mostly in SPI flash
 - Microkernel
 - Higher level code largely from MINIX
 - Custom filesystems
 - Custom binary format
- Configurable
 - Factory programmed fuses
 - Field programmable fuses
 - SPI Flash
- Extensible
 - Native modules
 - JVM (DAL)

Scope of this talk

Intel ME version 11, specifically looking at version 11.0.0.1205

Platforms:

- Sunrise Point (Core 6th, 7th generation SoC, Intel 100, 200 series chipset)
- Lewisburg (Intel C62x chipsets)

Disclaimer

- I am in no way affiliated with Intel Corporation.
- All information presented here was obtained from public documentation or by reverse engineering firmware extracted from hardware found "in the wild".
- Because this presentation covers a very broad and scarcely documented subject I can not guarantee accuracy of the contents.
- The goal of this talk is to introduce people to the subject and introduce new tools, as such parts of the background information have been discovered/published by other researchers.

Working with ME firmware images

- File format already extensively documented by Positive Technologies team (Mark Ermolov, Dmitry Sklyarov, Maxim Goryachy)
 - <u>https://www.blackhat.com/docs/eu-17/materials/eu-17-Sklyarov-Intel-ME-Flash-File-System-Explained-wp.pdf</u>
 - https://www.troopers.de/downloads/troopers17/TR17 ME11 Static.pdf
- Ready to use tools are available
 - Unpacks code, metadata:
 - ptresearch/unME11: Intel ME 11.x Firmware Images Unpacker
 - Unpacks code, metadata, config archives, config FS
 - platomav/MEAnalyzer: Intel Engine Firmware Analysis Tool
 - Unpacks/Repacks config archives
 - peterbjornx/meimagetool: Image manipulation tools for the Management Engine firmware
- Flash Image Tool contains XML descriptions of formats that can be retrieved using binwalk

Understanding the ME: Firmware Partitions

LDX	NAME	START	SIZE	TITE
1:	[FTPR]	1000	:A7000	Code
2:	[FTUP]	110000	:AC000	Code
3:	[DLMP]	0	:0	Code
4:	[PSVN]	E00	:200	Data
5:	[IVBP]	10C000	:4000	Data
6:	[MFS]	A8000	:64000	Data
7:	[NFTP]	110000	:AC000	Code
8:	[ROMB]	0	:0	Code
9:	[FLOG]	1BC000	:1000	Data
10:	[UTOK]	1BD000	:2000	Data
11:	[ISHC]	0	:0	Code

• FTPR/NFTP

- Read only filesystem
- Contains firmware code
- Mounted on /bin
 - FTPR is recovery/normal boot partition.
 - NFTP binaries not used during recovery.

• MFS

- Read/write filesystem
- Contains configuration data, state
- Initialized by Flash Image Tool
- FLOG -> Crash log
- UTOK -> Unlock Token
- ROMB -> ROM Bypass

Understanding the ME: Code partitions

bup.txt

👿 busdrv.met

busdrv.mod

busdrv.txt

🔣 crypto.met

₽ crypto.mod crypto.txt vtdisp.met crypto.txt vtdisp.mod vtdisp.txt

■ fpf.met ↓ fpf.mod ● fpf.txt ● FTPR.man

 ∇

• Code Partitions contain modules

- .mod files are loadable data/code (extension added by unME11)
- .met files are metadata (Converted by unME11 to .txt)

• and the partition manifest

- Filename:<partition>.man
- Same general format as the metadata files, but has header prepended.

Understanding the ME: Metadata

- Type-Length-Value store, entries are called extensions
- Converted to human readable form by unME11
- Extensions:
 - Data module info
 - $\circ \qquad {\rm Code\ module\ info}$
 - Shared Library info
 - Process info
 - MMIO ranges
 - Device file definitions
 - ...and more...

```
typedef struct {
    uint32_t tag;
    uint32_t length;
} met_ext_t;
```

See also:

https://github.com/peterbjornx/meloader/blob/master/include/manifest.h

Code verification chain

ERRATUM (Added after talk): Intel Key hashes are in boot ROM, not fuses. Fuses only select which keys are actually trusted.

Analysing a simple module

- The module file itself is a flat binary
- Metadata contains memory space info
 - Base load address is easy to find, and usually does not vary across modules within a single firmware version

ME shared libraries

- No dynamic linker!
- Jump vector table with fixed address entry points
- Normal SysV i386 calling convention

9037	.jmp	sub	102A
903C	; j_told	wer.	
9041	; j_toup	oper.	
9046	; jexi	it.	
904B	; j_memo	mp.	
9050	; j_memn	nove.	
9055	; j_memo	py_s.	
905A	; j_memn	nove_s	
905F	; j_stro	py_s.	
9064	; j_strr	ncpy_s	
9069	; j_stro	at_s.	
906E	; j_strr	ncat_s	
9073	; j_strl	len_s.	
9078	; j_mall	loc.	
907D	; j_call	loc.	
9082	; j_free	÷	

ME shared libraries

- syslib.mod
 - Entry point addresses vary per firmware version
 - Contains
 - hosted libc
 - libsrv
 - libheci
 - crypto library
 - **□** ...
- mask ROM
 - Entry point addresses fixed per chipset family (eg. SPT/LBG).
 - Base: 0x0000_1000
 - Contains
 - freestanding libc
 - MMIO
 - miscellaneous utility routines

Analysing a simple module

- The module file itself is a flat binary
- Metadata contains memory space info
 - Base load address is easy to find, and usually does not vary across modules within a single firmware version

:0002D000 entrypoint:					
00020000	pop	ebx ME module entrypoint	MINIX	3 crtso	
00020001	non	eax			
00020002	push	eax			
00020003	push	eb×			
00020004	call	sub_32447			
00020009	pop	Cax			
0002D00A	pop	eax			
0002000B	020 20				
0002D00B crtso_:		crtso:			
0002D00B	xor	ebp, ebp	xor	ebp, ebp	! clear for back
0002D00D	mov	eax, [esp]	mov	eax, (esp)	! argc
00020010	lea	edx, [esp+4]	lea	edx, 4(esp)	! argv
00020014	lea	ecx, [esp+eax*4+8]	lea	ecx, 8(esp)(eax*4)	! en∨p
00020018	mov	ebx, 3621Ch	MOV	ebx, _environ	
0002D01D	cmp	ebx, 36220h	cmp	ebx,edata	! within initial
00020023	jnb	short loc_2D038	jae	Θf	
00020025	test	bl, 3	testb	bl, 3	! aligned?
00020028	jnz	short loc_2D038	jnz	θf	
0002D02A	cmp	dword ptr [ebx], 53535353h	cmp	(ebx), 0x53535353	! is it our _env
00020030	jnz	short loc_2D038	jne	θf	
00020032	mov	ds:36218h, ebx	MOV	(penviron), ebx	! _penviron = &e
00020038					
0002D038 loc_2D038:					
00020038					
00020038	mov	ebx, ds:36218h	MOV	ebx, (penviron)	
0002D03E	mov	[ebx], ecx	MOV	(ebx), ecx	! *_penviron = e
00020040	push	ecx	nush	ecx	I nush envn
00020041	push	ed×	nush	edx	t nush argy
00020042	push	eax	nush	eax	t push argc
00020043	SMSW	ax	SMSW	ax	. pash argo
00020047	test	al, 4	testb	al. 0x4	! EM bit in MSW
00020049	setz	bute ptr ds:36224h	setz	(fpu present)	! True if not se
00020050	call	sub 2D371	call	main	f main(argc, arg
00020055	push	eax	nuch		• nuch evit etat
00020056	call	near ptr <mark>9046h</mark>	call	cax suit	: push exit stud
0002D05B	hlt		Lall	_exit	
0002D05C ;					
00020050	retn				

retn

Data sections

Initialized data is appended to .rodata	00032428 sub_32428 00032428 00032429 0003242E 0003242E	proc n push mov mov mov	ear ebp edx, offset dword_33000 ebp, esp eax, 36200h
Before crtso even runs it is copied over to ".bss" Addresses can be inferred from code or metadata.	00032435 00032435 10c_32435: 00032435 00032436 0003243C 0003243C 0003243D 0003243F 00032446 00032443	cmp jz inc mov inc mov	eax, 36220h short loc_32445 eax cl, [edx] edx [eax-1], cl short loc_32435
	00032445 : 00032445 00032445 loc_32445: 00032445 00032446 00032446 sub_32428	pop retn endp	ebp

Data sections

- Processes use flat 32-bit memory model
- Base address and various area sizes are stored in metadata.
- System library state resides in program-specified area.

For a minimal working implementation of this, see:

GitHub meloader repo: <u>user/loader/map.c</u>

Familiar APIs

ME provides many familiar POSIX APIs:

- libc:
 - read(), write(), close(), open(), fcntl(), ioctl(), select()
 - chdir(), stat(),
 - nearly everything in string.h
 - exit()
 - malloc(), free(), calloc()
- pthreads
 - pthread_create(), ...
 - pthread_mutex_{lock,unlock}
 - o ...

Example driver main() function

Trace output: SVEN

- Intel Software Visible Event Nexus
- Trace print format strings are replaced by message IDs
 - These are reasonably stable for given platform/major version.
- Output goes to Trace Hub
 - \circ $\,$ $\,$ Can be read back from host using memory trace $\,$
 - Can be read over debug interface EVEN WITHOUT UNLOCK
- Intel System Studio used to contain decoder and dictionary
 - GREEN dictionary is not very useful, only has a handful of messages
 - System Studio 2018 beta had a nearly complete one for LBG

```
void sven_catalog<n>( int level, int id, ... );
void sven_printf( const char *fmt, ... );
void sven_printf_l( int level, const char *fmt, ... );
void sven_init( int mmio );
```

ME driver overview: device files

- Unix-style special files under /dev
 - One major number per module
 - Major, minor numbers and names specified in metadata
 - Drivers implement read(), write(), open(), close(), ioctl() for device files
 - \circ ~ Not just for device drivers, used for all high-level services.
- syslib contains convenient framework for implementing this
 - Implementation details hidden, just provide callbacks

Ext#9 SpecialFileProducer[3]: major_number=0x0018

1: vdm_gde access_mode:0660, user_id:0x0074 group_id:0x0037 minor_number:00

- 2: vdm_pavp access_mode:0660, user_id:0x0074 group_id:0x018B minor_number:01
- 3: vdm_rosm access_mode:0660, user_id:0x0074 group_id:0x018C minor_number:02

ME driver overview: libsrv

Framework for drivers, allows driver to only implement simple callbacks.

- open(),close() implementations return their status,
- read(),write(),ioctl() call a reply function with their result data and status.
- libsrv also allows handling hardware interrupts and power state changes.

typedef int (*ioctl_cb)(int info, int fd, int gtid, int request, void *par);
typedef int (*open_cb)(srvctx_t *ctx, int minor, int gtid, int *p_fd, void *ok);
typedef int (*close_cb)(srvctx_t *ctx, int fd);

. Ext#8 MmioRanges[41]:

```
CF base:F00A0000, size:00006000, flags:00000003 RAVDM
D7 base:F5050000, size:00010000, flags:00000003 ICC_CONTROLLER
DF base:F0090000, size:00006000, flags:00000003 FTPM
```


- MMIOs are accessed through ROM library functions
- The MMIO ranges are defined in the manifest
- $mmio = (mmio_list_index * 8) | 7$
 - Seem familiar to anyone?

. Ext#8 MmioRanges[41]:

CF base:F00A0000, size:00006000, flags:00000003 RAVDM D7 base:F5050000, size:00010000, flags:00000003 ICC_CONTROLLER DF base:F0090000, size:00006000, flags:00000003 FTPM

- MMIOs are accessed through ROM library functions
- The MMIO ranges are defined in the manifest
- $mmio = (mmio_list_index * 8) | 7$

• Seem familiar to anyone?

void write_seg_32(int mmio, int offset, int value); void write_seg_16(int mmio, int offset, short value); void write_seg_8 (int mmio, int offset, char value); int read_seg_32 (int mmio, int offset); int read_seg_16 (int mmio, int offset); int read_seg_8 (int mmio, int offset); void write_seg (int mmio, int offset, const void *buffer, int count);

The levels below the POSIX-like environment

- Kernel implements IPC primitives and MMIO access
 - Message passing
 - Memory grants
 - DMA buffers
 - MMIO mappings
 - Memory protection
- VFS/Process Manager server implement POSIX calls
 - Accessed through kernel IPC
- Drivers and high level servers implement device files

Message Passing: Basics

- Used to implement server-based "syscalls" and other low level IPC
- Not often directly used by modules
- Mostly MINIX derived
- Fixed message header structure, variable body.
- int ipc_sendrec(int who, syscall_msg *msg)
 - Sends a message, and immediately does a blocking receive
 - Used for server calls
- int ipc_send (int who, syscall_msg *msg)
 - Sends a message, blocks until it is received
- int ipc_notify (int who)
 - Asynchronously sends a notify event to a process

Memory Grants

- Also MINIX derived (safecopies), relatively new feature in MINIX.
- Dynamic resource and memory access control
- Allows a process to register a global name for a memory buffer or MMIO range
- Referenced as (gtid, id) pair
 - Memory grant ID is not global, but always combined with the GTID of the owner process
- Granted to a single process.
- Either refers to
 - Granter memory space
 - (pointer, size)
 - MMIO resource:
 - (MMIO, offset, size)

Memory Grants

• Grantee operations:

- mg_copyto (MG, offset, data,size)
- mg_copyfrom(MG, offset, data,size)

• Owner operations:

- mg_getbuf(MG)
- mg_revoke(mg)
- mg_create(MMIO/memory, grantee GTID)

Memory Grants: Indirect Grants

- Refer not to memory but to a grant given to the owner.
- Allow grantee to further delegate grants
- Permissions are the intersection of those in the chain

ME optimizations to MINIX IPC: IOs

- Direct IPC between process and drivers is impossible in MINIX
- ME OS has a solution: kernel is aware of fd's
- Memory can be granted to fd's owners
- Messages targeted to GTID 0 go to fd driver.
ME optimizations to MINIX IPC: select_receive()

• select() was moved into kernel and combined with ipc_receive() as

void io_notify(int fd, int notbits);

DMA Locks

- Processes can request MGs to be locked in memory for DMA
- Separate in (device->ram) and out (ram->device) mappings

```
int sys_mem_dma_lock(
    short out_tid, char out_flags, int out_mg, int out_offset,
    short in_tid, char in_flags, int in_mg, int in_offset,
    int size,
    /*out*/ uint32_t *out_paddr,
    /*out*/ uint32_t * in_paddr,
    /*out*/ int *dl_hnd);
```

int sys_mem_dma_unlock(int dl_hnd);

ME Hardware

Understanding the address space

• MMIO metadata refers to physical addresses, but HW is nonstandard and configurable

• However,...

\$ strings busdrv.mod -n 12

```
HECI1_PCIPF_IBDF
HECI2_PCIPF_IBDF
FTPM_PCIPF_IBDF
SECURE_ENCLAVE_PCIPF_IBDF
RAVDM_PCIPF_IBDF
ATT_PCIPF_IBDF
GEN_PCIPF_IBDF
GPI0_PROXY_PCIPF_IBDF
KERNEL_TIMER_PCIPF_IBDF
```


The bus driver: busdrv

- Power gating
- PCI configuration space access
- Sideband bus access
- Physical resource mapping (BARs, ATTs)
- Old SPT builds have lots of debug strings
- Holds table containing system address and bus map

The table in human readable form

	Name	Туре	CFG base	Bus	Dev	Func	SAI	SKU flags
0	HECI1_PCIPF_IBDF	PRIM_PCIFIXED	F1000000	0	0	0		0
1	HECI2_PCIPF_IBDF	PRIM_PCIFIXED	F1001000	0	0	1		0
2	FTPM_PCIPF_IBDF	PRIM_PCIFIXED	F1002000	0	0	2		0
3	SECURE_ENCLAVE_PCIPF_IBDF	PRIM_PCIFIXED	F1003000	0	0	3		0
4	RAVDM_PCIPF_IBDF	PRIM_PCIFIXED	F1004000	0	0	4		0
5	ATT_PCIPF_IBDF	PRIM_PCIFIXED	F1005000	0	0	5		0
6	GEN_PCIPF_IBDF	PRIM_PCIFIXED	F1006000	0	0	6		0
7	GPIO_PROXY_PCIPF_IBDF	PRIM_PCIFIXED	F1007000	0	0	7		0
8	KERNEL_TIMER_PCIPF_IBDF	PRIM_PCIFIXED	F1008000	0	1	0		0
9	APP_TIMER_PCIPF_IBDF	PRIM_PCIFIXED	F1009000	0	1	1		0
10	IPC_PCIPF_IBDF	PRIM_PCIFIXED	F100A000	0	1	2		0
11	HECI3_PCIPF_IBDF	PRIM_PCIFIXED	F100B000	0	1	3		0

	Name	Туре	CFG base	Bus	Dev	Func	SAI	SKU flags
ROM	MINUTE_IA_SA_IBDF	ROM Early Init	E0000000	0	0	0	?	
ROM	CRYPTO_ENGINE_IBDF	ROM Init	E0008000	0	1	0	?	
17	KVM_PCIP_IBDF	PRIM_PCIP	E0040000	0	8	0	52	0
18	USBR0_PCIP_IBDF	PRIM_PCIP	E0048000	0	9	0	54	0
19	USBR1_PCIP_IBDF	PRIM_PCIP	E0049000	0	9	1	6E	0
20	SMT0_PCIP_IBDF	PRIM_PCIP	E0050000	0	10	0	56	0
21	SMT1_PCIP_IBDF	PRIM_PCIP	E0051000	0	10	1	56	0
22	SMT2_PCIP_IBDF	PRIM_PCIP	E0052000	0	10	2	56	0
23	SMT3_PCIP_IBDF	PRIM_PCIP	E0053000	0	10	3	56	
24	SMT4_PCIP_IBDF	PRIM_PCIP	E0054000	0	10	4	56	
25	SMT5_PCIP_IBDF	PRIM_PCIP	E0055000	0	10	5	56	
14	CLINK_PCIP_IBDF	PRIM_PCIP	E0058000	0	11	0	5C	0
26	SST_PCIP_IBDF	PRIM_PCIP	E0060000	0	12	0	5E	
15	PTIO_IDER_PCIP_IBDF	PRIM_PCIP	E0068000	0	13	0	60	0
16	PTIO_KT_PCIP_IBDF	PRIM_PCIP	E0069000	0	13	1	62	0
27	PMT_PCIP_IBDF	PRIM_PCIP	E0070000	0	14	0	64	0
31	HDAU_PCIP_IBDF	PRIM_PCIP	E00C0000	0	24	0	46	0
13	SPI_PCIP_IBDF	PRIM_PCIP	E00C8000	0	25	0	40	0
28	ESPI_PCIP_IBDF	PRIM_PCIP	E00C9000	0	25	1	40	0
12	PMC_PCIP_IBDF	PRIM_PCIP	E00D0000	0	26	0	2A	0
29	GBE_PCIP_IBDF	PRIM_PCIP	E00D8000	0	27	0	44	0
30	WLAN PCIP IBDF	PRIM PCIP	E0100000	1	0	0	5C	0

Other information sources on HW

- My ME emulator:
 - <u>https://github.com/peterbjornx/meloader</u>
- Various files in old Intel System Studio versions
 - See Intel VISA: Through the Rabbit Hole (Goryachy, Ermolov) for info on extracting
 - https://github.com/peterbjornx/iss_tools Tools for parsing some of the XML config
- Innovation Engine firmware by HP
- Pentium N and J Series Datasheets
 - Intel® Pentium® and Celeron® Processor N and J Series: Datasheet 3

Source: Intel VISA: Through the Rabbit Hole (Ermolov, Goryachy at BlackHat Asia 2019)

Processor

- Lakemont microarchitecture
 - "Minute IA"
 - 486 derived
 - Same as Quark MCUs
 - Run-Control documentation is public
 - Supported by OpenOCD
- Modern ISA extensions
 - MSRs
 - CPUID
- Only MSI interrupts used

Custom host bridge: Minute IA System Agent

- Similar to some Quark devices
- Partial documentation available:
 - Intel® Pentium® and Celeron® Processor N and J Series: Datasheet 3
- IO address space seems to be unused!

- Implements
 - SRAM / ROM controller
 - IOMMU for fabric->memory requests
 - PCI configuration space access
 - Bus firewall
 - and more

Hardware Cryptographic Accelerator

- Referred to in various places as OCS
- Hardware implementations of
 - o SHA1
 - SHA256
 - SHA256 HMAC
 - AES (2 cores)
 - RSA
 - RC4
- Multiple DMA engines
- Secure Key Storage

Base	Name	DMA
+8000	AES	x
+A000	AES	x
+B000	Hash	X
+C000	? (RC4 in IE)	X
+D000	? (GP in IE)	X
+E000	RSA	
+F000	SKS	

Hardware Cryptographic Accelerator IP blocks (partial)

Crypto: DMA Engines

- At offset 400h in HCU sub devices
- Used for general purpose DMA
- Src/Dst = 0 targets internal buffer

id	name	Description
+400	SRC_ADDR	Source address of the DMA transfer
+404	DST_ADDR	Destination address of the DMA transfer
+408	SRC_SIZE	Size of the source buffer
+40C	DST_SIZE	Size of the destination buffer
+410	CONTROL	Transfer control bits
+428	STATUS	Status of the DMA engine

Host-Embedded Controller Interface (HECI)

- Misleading name
 - \circ also known as Management Engine Interface (MEI)
- Command interface between Host and ME
- Firmware Status Registers
 - $\circ \qquad \text{Written by ME}$
 - Read by host.
 - See <u>https://github.com/peterbjornx/meloader/tree/master/periph/gasket/heci</u>
 - and intel/skylake: Display ME firmware status before os boot (Ia511c4f3) Gerrit Code Review
 - \circ and the MEINFO tool in the vendor package.

Primary Address Translation Table

- Maps ME memory cycles onto primary fabric
- Used for both ME and host root spaces
- Not fully understood yet, config is pretty much hardcoded:

ME Address		Size		Primary address		Control	Descriptions
F2000000		2000000		00000000_F2000000		12040007	ME peripherals
F4600000		200000		00000000_F4600000		12040007	ME peripherals
D0000000		4000000		0000000_00000000		080E0003	UMA
F7000000		800000		00000000_F7000000		12040007	TraceHub
BC000000		2000000		0000000_00000000		01040003	Host DRAM!
C0000000		2000000		0000000_00000000		03440003	
C4000000		2000000		0000000_00000000		03440003	
C8000000		2000000		0000000_C8000000		12040003	
CA000000		2000000		0000000_00000000		03040003	
	ME Address F2000000 F4600000 D0000000 F7000000 BC000000 C0000000 C4000000 C8000000 CA000000	ME Address F2000000 F4600000 D0000000 F7000000 BC000000 C0000000 C4000000 C8000000 CA000000	ME Address Size F2000000 200000 F4600000 200000 D0000000 4000000 F7000000 800000 BC000000 2000000 C4000000 2000000 C8000000 2000000 CA000000 2000000	ME AddressSize F2000000 2000000 F4600000 200000 D00000000 4000000 F7000000 800000 BC000000 2000000 C0000000 2000000 C4000000 2000000 C8000000 2000000 CA000000 2000000	ME AddressSizePrimary addressF200000020000000000000_F2000000F46000002000000000000_F4600000D000000040000000000000_000000F70000008000000000000_F7000000BC00000020000000000000_0000000C000000020000000000000_0000000C4000000200000000000000C800000020000000000000CA00000020000000000000	ME AddressSizePrimary addressF200000020000000000000_F2000000F46000002000000000000_F4600000D000000040000000000000_000000F70000008000000000000_F7000000F700000020000000000000_0000000BC00000020000000000000_0000000C4000000200000000000000C8000000200000000000000CA00000020000000000000CA00000020000000000000	ME AddressSizePrimary addressControlF200000020000000000000_F200000012040007F46000002000000000000_F460000012040007D000000040000000000000_000000080E0003F70000008000000000000_F700000012040007BC00000020000000000000_000000001040003C00000002000000000000003440003C40000002000000000000003440003C80000002000000000000003440003CA0000002000000000000003040003

Root spaces

• Some peripherals expose different PCI functions to different hosts

- Example: SPI controller, documented at:
 - Intel® Pentium® and Celeron® Processor N and J Series: Datasheet 3

Sideband Fabric

- Packet switched network
- Endpoint IDs instead of PCI BDF
- Accessible from both ME and host
- PCI-like opcodes:
 - Register R/W
 - Configuration R/W
 - Memory R/W
- Addressed by:
 - (Opcode, Endpoint, Root Space, Function Number, BAR number)
- Security model based around SAI numbers
- Spec partially public as patent application US 2013 0138858A1

Sideband Address Translation Table

Maps sideband devices as memory space

id	name	
+00	INT_BA	
+04	INT_SIZE	
+08	CONTROL	
+10	unknown	
+14	unknown	
+18	SB_ADDRESS	
+1C	SB_ADDRESS_HI	

start	end	name	Description
0	7	endpoint	The sideband endpoint number
8	15	read_op	The read opcode to use
16	23	write_op	The write opcode to use
24	27	bar	The base address register index

start	end	name	Description	
0	7	function	The function ID being addressed	
8	10	rootspace	The root space	

Some sideband addresses for LBG/SPT

BROADCAST1 = 0xFF,	LDO = 0x14,	NPK = 0xB6,	CSME3 = 0x93, //FSC	RUMAIN = 0x3B,
BROADCAST2 = 0xFE,	DSP = 0xD7,	$MMP0 = 0 \times B0$,	CSME2 = 0x92, //USB-RSAI	EC = 0x20,
DMI = 0xEF,	FUSE = 0xD5,	GPIOCOM0 = 0xAF,	CSME0 = 0x90, //CSE	CPM2 = 0x38,
ESPISPI = 0xEE,	FSPROX0 = 0xD4,	GPIOCOM1 = 0xAE,	CSME_PSF = 0x8F, //MEPSF	CPM1 = 0x37,
ICLK = OxED,	DRNG = 0xD2,	GPIOCOM2 = 0xAD,	CSMERTC = 0x8E,	CPMO = 0xOC,
MODPHY4 = 0xEB,	FIA = 0xCF,	GPIOCOM3 = 0xAC,	IEUART = 0x80,	VSPTHERM = 0x25,
MODPHY5 = 0x10,	FIAWM26 = 0x13,	GPIOCOM4 = 0xAB,	IEHOTHAM = 0x7F,	VSPP2SB = 0x24,
MODPHY1 = 0xE9,	USB2 = 0xCA,	GPIOCOM5 = 0x11,	IEPMT = 0x7E,	VSPFPK = 0x22,
PMC = 0xE8,	LPC = 0xC7,	MODPHY2 = 0xA9,	IESSTPECI = 0x7D,	VSPCPM2 = 0x35,
XHCI = 0xE6,	SMB = 0xC6,	MODPHY3 = 0xA8,	IEFSC = 0x7C,	VSPCPM1 = 0x34,
OTG = 0xE5,	P2S = 0xC5,	PNCRC = 0xA5,	IESMT5 = 0x7B,	VSPCPM0 = 0x33,
SPE = 0xE4,	ITSS = 0xC4,	PNCRB = 0xA4,	IESMT4 = 0x7A,	MSMROM = 0x08,
SPD = 0xE3,	RTC = 0xC3,	PNCRA = 0xA3,	IESMT3 = 0x79,	PSTH = 0x89
SPC = 0xE2,	PSF5 = 0x8F,	PNCR0 = 0xA2,	IESMT2 = 0x78,	
SPB = 0xE1,	PSF6 = 0x70,	CSME15 = 0x9F, //SMS2	IESMT1 = 0x77,	
SPA = 0xE0,	PSF7 = 0x01,	CSME14 = 0x9E, //SMS1	IESMTO = 0x76,	
UPSX8 = 0x06,	PSF8 = 0x29,	CSME13 = 0x9D, //PMT	IEUSBR = 0x74,	
UPSX16 = 0x07,	PSF9 = 0x21,	CSME12 = 0x9C, //PTIO	IEPTIO = 0x73,	
TAP2IOSFSB1 = 0xDF,	PSF10 = 0x36,	CSME11 = 0x9B, //PECI	IEIOSFGASKET = 0x72,	
TRSB = 0xDD,	PSF4 = 0xBD,	CSME9 = 0x99, //SMT6	IEPSF = 0x70,	
ICC = 0xDC,	PSF3 = 0xBC,	CSME8 = 0x98, //SMT5	FPK = 0x0A,	
GBE = 0xDB,	PSF2 = OxBB,	CSME7 = 0x97, //SMT4	MPOKR = 0x3C,	
SATA = 0xD9,	PSF1 = OxBA,	CSME6 = 0x96, //SMT3	MP1KR = 0x3E,	
SSATA = 0x0F,	HOTHARM = 0xB9,	CSME5 = 0x95, //SMT2	RUAUX = 0x0B,	
LDO = 0x14,	DCI = 0xB8,	CSME4 = 0x94, //SMT1		
	DFXAGG = 0xB7,			

Source: Intel VISA: Through the Rabbit Hole (Ermolov, Goryachy at BlackHat Asia 2019)

Dynamic analysis

Slide from Inside Intel Management Engine (Ermolov, Goryachy at 34C3)

Developing an exploit for CVE-2017-5705,6,7

- Determine stack location
- Craft payload to turn stack variable overflow into arbitrary write
- Determine return pointer address
- Find ROP gadgets
- Turn on debug access / chainload custom firmware

meloader: *WINE* for the ME

- Runs unmodified ME usermode binaries under Linux
- Built to run *bup*, not to be an accurate emulation of HW

https://github.com/peterbjornx/meloader

Features:

- ME binary loader
- Hooks for syslib, romlib
- Syscall stubs
- MMIO peripheral emulation
- Bus emulation
- MMIO passthrough to external programs
- Configurable hardware configuration and initial state
- SVEN decoder

meloader as a debugger

• Get meloader to run bup to the vulnerable part of its code

Peter Bosch @peterbjornx · Apr 21

I've gotten my ME loader to the point where it will load the Trace Hub config file, which means that I can now easily debug an SA-00086 exploit and hopefully get JTAG on a real ME other than the TXT targetted by the PT proof of concept

Q1 t⊒ ♡4 ₫ I

- Develop exploit against *bup* running in *meloader*
- Forget to add --one-file-system to rm command and lose homedir

+ 🙂 🚥

Good news, I finally got it!

Unfortunately there wasn't a way to scan or probe for devices so I had to generate an xml with all possible device paths in the jtag chain and clear out those with an invalid idcode then did an irdrscan 0x2 on valid TAP devices until I found the processor id of the LMT device.

In the end, it works :)

Thanks for all the help I got from here!

ndx DID			Step	Idcode.		fnabled	energidelikiton verifikit	~ 0	×
6 - 0.0005 - 000 7 - 0.0005 - 000 7 - 0.0005 - 001 7 - 0.0005 7 - 0.0005 7 - 0.0005 - 001	571 571 571 571 571 571 571 571	97 57 ANT 18 58 T ANT 18 58 T ANT 18 59 T ANG 18 59 T ANG 18 59 T ANG 18 50		0x345664713 0x350001200 0x350012007 0x350012007 0x350012007 0x35000012007 0x35000001 0x35000001 0x35000000 0x35000000 0x35000000 0x35000000 0x35000000 0x35000000 0x35000000 0x35000000 0x350000000 0x350000000 0x3500000000 0x3500000000 0x35000000000 0x350000000000		· Yes · <t< th=""><th><pre>Fas Lot Openno Bother Tools Synce Hep Fas Lot Openno Bother Tools Synce Hep Fas Lot Openno Bother Tools Synce Hep Fast Lot Openno</pre></th><th></th><th></th></t<>	<pre>Fas Lot Openno Bother Tools Synce Hep Fas Lot Openno Bother Tools Synce Hep Fas Lot Openno Bother Tools Synce Hep Fast Lot Openno</pre>		
(3) 1pc.thes (4) (c5NE_C0_10) (4) 1pc.thes (4) 1pc.thes (5)	rads[0].halt{} Halt Command Break at rads[0].asm["S") nonononononotical ebfe	[8x154:000000000000	6es3] 80 ;s	18:10:20 -0x44es3	68800 20		<pre>imp == struct.ge(r=2., is)</pre>		

After I'm done with the rest of my ROPs to get the main CPU booting, I'll release everything with a blog post on the whole process, in the meantime, you get to see the important offsets in that screenshot for those who need them :)

kakaroto: Exploiting Intel's Management Engine - Part 2: Enabling Red JTAG Unlock on Intel ME 11.x (INTEL-SA-00086)

Peter Bosch @peterbjornx · Sep 1

Haven't yet pushed everything for this yet, but here's my ME emulator booting BUP to the point where it does the unlock logic, EXI logic and tracehub config (/home/bup/ct).

[METRC]	sven: 0056000D808600020000002	
[ERROR]	cse_sa: Bus error while reading from primary bus addr F00B1050 size	4
[METRC]	sven: CSE zeroing register 00000000	
[METRC]	sven: DFX consent register 00000000	
[METRC]	sven: DFX personality register 00000000	
[METRC]	sven: DFX status register (low dword) 00000000	
[METRC]	sven: DFX status register (high dword) 00000000	
[METRC]	sven: DFX PUID register (low dword) 78ABCDEF	
[METRC]	sven: DFX PUID register (high dword) 00123456	
[ERROR]	libc: syscall(25, 12, 0x0005CE78) wrong size	
[ERROR]	libc: syscall(25, 12, 0x0005CE78) wrong size	
[METRC]	sven: "No secure token present"	
[METRC]	supp: "[HECT] CSE GS1] write data = 0x1000000 mask data = 0xE000000 "	
[DEBUG]	evi: Read emerc register: AAAAAAAA	
[DEBUG]	exi: Write emerc register: 00000000 (Evi disabled)	
[DEBUG]	exi: Read emerc register: 00000000 (Exi disabled)	
[DEBUG]	exi: Read ectr] register: 00000000	
[0000]	ext. neud eerre register. oooostoo	
[DEBUG]	dfxagg: Write consent register: 00000001	
[DEBUG]	dfxagg: Write consent register: 00000001	
[DEBUG]	dfxagg: Write consent register: 00000001 pmc: Write to unimplemented register 00000218 size 4	
[DEBUG] [ERROR] [DEBUG]	dfxagg: Write consent register: 00000001 pmc: Write to unimplemented register 00000218 size 4 thub: Read SCRPD0: 0x01000000	
[DEBUG] [ERROR] [DEBUG] [ERROR]	dfxagg: Write consent register: 00000001 pmc: Write to unimplemented register 00000218 size 4 thub: Read SCRPD0: 0x01000000 cse_sa: Bus error while reading from primary bus addr F0080018 size	4
[DEBUG] [ERROR] [DEBUG] [ERROR]	dfxagg: Write consent register: 00000001 pmc: Write to unimplemented register 00000218 size 4 thub: Read SCRPD0: 0x01000000 cse_sa: Bus error while reading from primary bus addr F0080018 size	4
[DEBUG] [ERROR] [DEBUG] [ERROR]	dfxagg: Write consent register: 00000001 pmc: Write to unimplemented register 00000218 size 4 thub: Read SCRPD0: 0x01000000 cse_sa: Bus error while reading from primary bus addr F0080018 size	4
[DEBUG] [ERROR] [DEBUG] [ERROR]	dfxagg: Write consent register: 00000001 pmc: Write to unimplemented register 00000218 size 4 thub: Read SCRPD0: 0x01000000 cse_sa: Bus error while reading from primary bus addr F0080018 size ↓↓ 3 ◇ 30 ↓↓	4

Peter Bosch @peterbjornx · Sep 1

Finally got around to re-implementing and testing an exploit for the ME buffer overflow while parsing /home/bup/ct. Haven't tested against real HW yet, but it works in the emulator: Enabling DCI followed by RED unlock. The code path I used is the arb. write via mg_copyto.

https://github.com/peterbjornx/me sa86 exploit

Target

USB3 Hosting DCI: For SO-State DFx access and high performance operations

Expensive: € 456,30

https://eu.mouser.com/ProductDetail/Intel/EXIBSSBADAPTOR?qs=byeeYqUIh0P5fUdWOCXn8A%3D%3D

System boot process

ME Boot Process

- Microkernel bootstrap problem: the bup module
 - Has integrated versions of server functionality.
 - Had very high privileges up to ME 12
 - Is responsible for starting host CPU.
 - Starts all servers

Image credit: "Intel ME: The Way of the Static Analysis." Ermolov, Goryachy, Sklyarov (2017)

Host Boot Process

The Power Management Controller

- 8051 based MCU
- Runs CMX RTOS "Copyright (c) CMX Co. 1999. All Rights Reserved"
- On SPT, Firmware in ROM but patches written from CSME
- On LBG, Firmware loaded from CSME
- Presents register based interface to the CSME
- Controls power gating and reset of IP blocks and CPU

Host Initialization: ME tasks

- 1. Boot guard configuration load
- 2. Clock controller setup
- 3. PMC CPU power ungate
- 4. PSF Fabric configuration
- 5. CPU out of reset

Getting to the minimal viable implementation

DEMO: meloader boots real HW

Boot Guard Configuration

Boot Guard Configuration

CPU

- Profile in MSRs
- ACM verifies
- Result to MMIO device
- Result to MSRs

CSME

- Profile in Secure Enclave device
- Respond to status of Secure Enclave
- Shutdown timer in software

Boot Guard Configuration Minimal viable implementation

#00000001 ; enum BUDTPULRES, mappedto_191, bitfield #00000001 SB_FBGAcmEn = 1 #000000002 SB_CpuDebugEn = 2 #000000004 SB_BspInitEn = 4 #000000008 SB_ProtectBiosEn = 8 #000000001 ; enum BUDTPULTYPE, mappedto_192, bitfield #000000001 SB_MeasuredBootEn = 1 #000000002 SB_VerifiedBootEn = 2	# Secure Enclave Registers ENC_UNK00 =0xF0099000 ENC_BOOTPOL =0xF0099040 ENC_SUNKMID =0xF0099044 ENC_PUBKEY =0xF0099048
<pre>lef enclave_init(hwif): hwif.memory write(ENC BOOTPOL</pre>) # bootpoltype . bootpolres
hwif.memory_write(ENC_SUNKMID , 4, 0x00000000) # kmid . svn_bsmm . svn_acm_km
hwif.memory_write(ENC_PUBKEY+0x00, 4, 0x00000000) # public key hash[0]
hwif.memory_write(ENC_PUBKEY+0x04, 4, 0x00000000) # public key hash[1]
hwif.memory_write(ENC_PUBKEY+0x08, 4, 0x00000000) # public key hash[2]
hwif.memory_write(ENC_PUBKEY+0x0C, 4, 0x00000000) # public key hash[3]
hwif.memory_write(ENC_PUBKEY+0x10, 4, 0x00000000) # public key hash[4]
hwif.memory_write(ENC_PUBKEY+0x14, 4, 0x00000000) # public key hash[5]
hwif.memory_write(ENC_PUBKEY+0x18, 4, 0x00000000) # public key hash161
hwif.memory_write(ENC_PUBKEY+0x1C, 4, 0x00000000) # public key hash[7]
hwif.memory write(ENC UNKOO . 4. 0x00000040) # constant?

Boot Guard Configuration Minimal viable implementation

• Also opens up host-side firmware replacement for machines with Boot Guard enabled

def	enclave init(hwif)	:						
	hwif.memory_write(ENC_BOOTPOL ,	4,	0x00040100)	#	bootpoltype . bootpolres	5
	hwif.memory_write(ENC_SUNKMID ,	4,	0x00000000)	#	kmid . svn_bsmm . svn_au	cm_km
	hwif.memory_write(ENC_PUBKEY+0x00,	4,	0x00000000)	#	public key hash[0]	1.11
	hwif.memory_write(ENC_PUBKEY+0x04,	4,	0x00000000)	#	public key hash[1]	
	hwif.memory_write(ENC_PUBKEY+0x08,	4,	0x00000000)	#	public key hash[2]	
	hwif.memory_write(ENC_PUBKEY+0x0C,	4,	0x00000000)	#	public key hash[3]	
	hwif.memory_write(ENC_PUBKEY+0x10,	4,	0x00000000)	#	public key hash[4]	
	hwif.memory_write(ENC_PUBKEY+0x14,	4,	0x00000000)	#	public key hash151	
	hwif.memory_write(ENC_PUBKEY+0x18,	4,	0x00000000)	#	public key hash161	
	hwif.memory_write(ENC_PUBKEY+0x1C,	4,	0x00000000)	#	public key hash[7]	
	hwif.memory write(ENC UNKOO ,	4,	0X00000040)	#	constant?	

Future goals

- Escalate to Ring 0
 - Either through "modchip" on debugger interface or
 - through kernel vulnerability.
- Implement bootloader for custom firmware
- and minimal bringup firmware.
- Add ExI support to openocd
- Clone Intel CCA
- Research post-boot power management: Sleep, Reboot, Shutdown
- Research PMC firmware
- Research other peripherals

Acknowledgements

- @noopwafel for lending me her Intel SVT-CCA
- Igor Skochinsky for information that helped me get started on this project
- Mark Ermolov for helping me out when I got stuck
- RevSpace (The Hague hackerspace) for access to a well-equipped electronics lab.

Questions?

Cloning the CCA

Debugging Intel systems: BSSB physical layer

Debugging Intel systems: BSSB physical layer

BSSB waveforms: Sync

BSSB_DO (to DUT) sampled on BSSB_CLK falling edge, data order LSb first Sync word is 0x0001

BSSB waveforms: First DUT->Host packet

BSSB_DI (from DUT) sampled on BSSB_CLK rising edge, data order LSb first

BSSB packets

- 64 bytes long
- Little Endian
- Same protocol as USB based ExI
 - CCA does handle some vendor requests

Outbound ExI packets

- DUT to Host
- Payload length only sent if E(xtended Header) is set

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14 1	3	12	11	10	9	8	7	6	5	4	3	2	1	0
Е	TTI	TIH		Tr3	Tr2	Tr1	$\operatorname{Tr0}$					FoM	FoJ	$\rm FoO$	FoS		ł	Þķ	ΥЛ	[_]	[D			F	ΡK	T	_T	Ϋ́	Ρł	Ð	V
	PAYLOAD_LENGTH																														

Inbound ExI packets

- Host to DUT
- Payload length only sent if E(xtended Header) is set

31	$30\ 29\ 28\ 27\ 26\ 25\ 24$	23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8	7	6	5	4	3	2	1 ()
Ε	SET_PKT_ID	MSG_PKT_ID	PKT_ID	P	PK	Т	_Τ	Υ	ΡF	E V	V
	PAYLOAI										

100C	cookie_value
R	OM API
En	trypoints
1010	tstamp_read
1015	atol1
101A	atol2
101F	atoll
1024	memchr
1029	memcmp
102E	memcpy
1033	memmove
1038	memrchr
103D	memset
1042	strcat
1047	strchr
104C	strcmp
1051	strcpy
1056	strlen
105B	strncat

1060	strncmp
1065	strncpy
106A	strnlen
106F	strrchr
1074	strstr
1079	strtol1
107E	strtoll
1083	strtol2
1088	memcasecmp
108D	strcasecmp
1092	strncasecm
1097	itoa
109C	itoa
10A1	utoa
10D3	bw_clr_lsk
10D8	bw_clr_msb
10DD	bw_set_lsb
10E2	bw_set_msb
10E7	bw_find_hi
10EC	bw_find_hi
10F1	bw_find_lc
10F6	bw find lo

p

lsb

1105 bit_fill_set 110A bit set 1178 bit sc and 110F bit clear 117D base64 size 1114 bit range set 1182 base64 dec 1119 bit range clear 1191 shl64 111E bit test 1196 shr s64 <u>1123 bit</u>and 11A0 shr_u64 1128 bit or 11AA mul s64 112D bit inv _____ 11AF div64 1132 bit_xor 11B4 mod64 1137 bit find set lsb 11B9 write seg 32 113C bit find set msb 11BE write seg 16 1141 bit find clr lsb 11C3 write seg 8 1146 bit find clr msb 11C8 read seg 32 114B bit csub set 1sb 11CD read seg 16 <u>1150 bit c</u>sub set msb 11D2 read seg 8 1155 bit ssub clr lsb 11D7 write seg 115A bit ssub clr msb 11DC read seg msb 115F bit fsub set lsb 11FA crc8 lsb msb 1164 bit fsub set msb

10FB bw count ones 1169 bit fsub clr lsb 1100 bit fill clear 116E bit fsub clr msb 1173 bit count sub ones 1209 memcmp ct

Useful filenames

system_studio_2016.1.028.exe system_studio_2016.2.040.exe system_studio_2016.3.043.exe system_studio_2016.4.046.exe system_studio_2017.1.045.exe system_studio_2017.2.050.exe system_studio_2017.3.057.exe system studio 2017 beta.0.028.exe system_studio_2019.0.033_ultimate_edition_windows_target.exe system_studio_2019.1.050_ultimate_edition_windows_target.exe system_studio_2019.2.057_ultimate_edition_windows_target.exe system_studio_2019.4.077_ultimate_edition_windows_target.exe system studio 2019 beta.0.014 ultimate edition windows target.exe system_studio_2019_update_3_ultimate_edition.exe w cembd 2014.0.026.exe w cembd p 2013.0.013.exe