
Intel Management Engine
Deep Dive

Peter Bosch

About me

Peter Bosch

● CS / Astronomy student at Leiden University

● Email : me@pbx.sh

● Twitter: @peterbjornx

● GitHub: peterbjornx

● https://pbx.sh/

https://pbx.sh/

About me

Previous work:

● CVE-2019-11098: Intel Boot Guard bypass through TOCTOU

attack on the SPI bus (Co-discovered by @qrs)

Outline

1. Introduction to the Management Engine Operating System

2. The Management Engine as part of the boot process

3. Possibilities for opening up development and security research on the ME

Additional materials will be uploaded to https://pbx.sh/ in the days following the talk.

https://pbx.sh/

About the ME

About ME

● Full-featured embedded system within the PCH
○ 80486-derived core
○ 1.5MB SRAM
○ 128K mask ROM
○ Hardware cryptographic engine
○ Multiple sets of fuses.
○ Bus bridges to PCH global fabric
○ Access to host DRAM
○ Access to Ethernet, WLAN

● Responsible for
○ System bringup
○ Manageability

■ KVM
○ Security / DRM

■ Boot Guard
■ fTPM
■ Secure enclave

About ME

● Only runs Intel signed firmware

● Sophisticated , custom OS
○ Stored mostly in SPI flash
○ Microkernel
○ Higher level code largely from MINIX
○ Custom filesystems
○ Custom binary format

● Configurable
○ Factory programmed fuses
○ Field programmable fuses
○ SPI Flash

● Extensible
○ Native modules
○ JVM (DAL)

Scope of this talk

Intel ME version 11 , specifically looking at version 11.0.0.1205

Platforms:

● Sunrise Point (Core 6th, 7th generation SoC, Intel 100, 200 series chipset)

● Lewisburg (Intel C62x chipsets)

Disclaimer

● I am in no way affiliated with Intel Corporation.
● All information presented here was obtained from public

documentation or by reverse engineering firmware extracted
from hardware found “in the wild”.

● Because this presentation covers a very broad and scarcely
documented subject I can not guarantee accuracy of the
contents.

● The goal of this talk is to introduce people to the subject and
introduce new tools, as such parts of the background
information have been discovered/published by other
researchers.

Working with ME firmware images

● File format already extensively documented by Positive Technologies team (Mark

Ermolov, Dmitry Sklyarov, Maxim Goryachy)
○ https://www.blackhat.com/docs/eu-17/materials/eu-17-Sklyarov-Intel-ME-Flash-File-System-Ex

plained-wp.pdf
○ https://www.troopers.de/downloads/troopers17/TR17_ME11_Static.pdf

● Ready to use tools are available
○ Unpacks code, metadata:

■ ptresearch/unME11: Intel ME 11.x Firmware Images Unpacker
○ Unpacks code, metadata, config archives, config FS

■ platomav/MEAnalyzer: Intel Engine Firmware Analysis Tool
○ Unpacks/Repacks config archives

■ peterbjornx/meimagetool: Image manipulation tools for the Management Engine firmware

● Flash Image Tool contains XML descriptions of formats that can be retrieved using

binwalk

https://www.blackhat.com/docs/eu-17/materials/eu-17-Sklyarov-Intel-ME-Flash-File-System-Explained-wp.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Sklyarov-Intel-ME-Flash-File-System-Explained-wp.pdf
https://www.troopers.de/downloads/troopers17/TR17_ME11_Static.pdf
https://github.com/ptresearch/unME11
https://github.com/platomav/MEAnalyzer
https://github.com/peterbjornx/meimagetool

Understanding the ME: Firmware Partitions

● FTPR/NFTP
○ Read only filesystem
○ Contains firmware code
○ Mounted on /bin

■ FTPR is recovery/normal boot partition.
■ NFTP binaries not used during recovery.

● MFS
○ Read/write filesystem
○ Contains configuration data, state
○ Initialized by Flash Image Tool

● FLOG -> Crash log

● UTOK -> Unlock Token

● ROMB -> ROM Bypass

 IDX NAME START SIZE TYPE

 1: [FTPR] 1000:A7000 Code
 2: [FTUP] 110000:AC000 Code
 3: [DLMP] 0:0 Code
 4: [PSVN] E00:200 Data
 5: [IVBP] 10C000:4000 Data
 6: [MFS] A8000:64000 Data
 7: [NFTP] 110000:AC000 Code
 8: [ROMB] 0:0 Code
 9: [FLOG] 1BC000:1000 Data
 10: [UTOK] 1BD000:2000 Data
 11: [ISHC] 0:0 Code

Understanding the ME: Code partitions

● Code Partitions contain modules
○ .mod files are loadable data/code (extension added by unME11)
○ .met files are metadata (Converted by unME11 to .txt)

● and the partition manifest
○ Filename : <partition>.man
○ Same general format as the metadata files, but has header prepended.

Understanding the ME: Metadata

● Type-Length-Value store, entries are called extensions

● Converted to human readable form by unME11

● Extensions:
○ Data module info
○ Code module info
○ Shared Library info
○ Process info
○ MMIO ranges
○ Device file definitions
○ ...and more...

See also:

https://github.com/peterbjornx/meloader/blob/master/include/manifest.h

typedef struct {
uint32_t tag;
uint32_t length;

} met_ext_t;

https://github.com/peterbjornx/meloader/blob/master/include/manifest.h

Code verification chain

ERRATUM (Added after talk): Intel Key hashes are in boot ROM, not fuses. Fuses only select which
keys are actually trusted.

Analysing a simple module

● The module file itself is a flat binary

● Metadata contains memory space info
○ Base load address is easy to find, and usually does not vary across modules within a single

firmware version

Missing code section?

Missing code section?

Missing data section?

ME shared libraries

● No dynamic linker!

● Jump vector table with fixed address entry points

● Normal SysV i386 calling convention

ME shared libraries

● syslib.mod
○ Entry point addresses vary per firmware version
○ Contains

■ hosted libc
■ libsrv
■ libheci
■ crypto library
■ …

● mask ROM
○ Entry point addresses fixed per chipset family (eg. SPT/LBG).
○ Base: 0x0000_1000
○ Contains

■ freestanding libc
■ MMIO
■ miscellaneous utility routines

Analysing a simple module

● The module file itself is a flat binary

● Metadata contains memory space info
○ Base load address is easy to find, and usually does not vary across modules within a single

firmware version

romlib_func_1000?

syslib: clear_ctx

Missing data section?

C Runtime Startoff (crtso)

Data sections

● Initialized data is appended to

.rodata

● Before crtso even runs it is

copied over to “.bss”

● Addresses can be inferred from

code or metadata.

Data sections

● Processes use flat 32-bit memory model

● Base address and various area sizes are stored in

metadata.

● System library state resides in program-specified

area.

For a minimal working implementation of this, see:

GitHub meloader repo: user/loader/map.c

https://github.com/peterbjornx/meloader/blob/master/user/loader/map.c

Familiar APIs

ME provides many familiar POSIX APIs:

● libc:
○ read(), write(), close(), open(), fcntl(), ioctl(), select()
○ chdir(), stat(),
○ nearly everything in string.h
○ exit()
○ malloc(), free(), calloc()

● pthreads
○ pthread_create(), …
○ pthread_mutex_{lock,unlock}
○ ...

Example driver main() function

 cookie = cookie_value;
 memset(&funcs, 0, 40);
 funcs.open = VdmDrvOpenCallback;
 ...
 funcs.select = VdmDrvSelectCallback;
 funcs.var_1C = sub_2D062;
 sven_init(7);
...
 event_fd = open("/dev/events", 2);
...
 if (srv_init(&g_srv_ctx, 24, &funcs, 0, 5)) {
 sven_catalog0i(2, 0x320033);
 goto LABEL_7;
 }
 return srv_task(&g_srv_ctx);

POSIX file IO

libsrv init

libsrv callbacks

SVEN tracing

libsrv main loop

Trace output: SVEN

● Intel Software Visible Event Nexus
● Trace print format strings are replaced by message IDs

○ These are reasonably stable for given platform/major version.

● Output goes to Trace Hub
○ Can be read back from host using memory trace
○ Can be read over debug interface EVEN WITHOUT UNLOCK

● Intel System Studio used to contain decoder and dictionary
○ GREEN dictionary is not very useful, only has a handful of messages
○ System Studio 2018 beta had a nearly complete one for LBG

void sven_catalog<n>(int level, int id, ...);
void sven_printf(const char *fmt, ...);
void sven_printf_l(int level, const char *fmt, ...);
void sven_init(int mmio);

ME driver overview: device files

● Unix-style special files under /dev
○ One major number per module
○ Major, minor numbers and names specified in metadata
○ Drivers implement read(), write(), open(), close(), ioctl() for device files
○ Not just for device drivers, used for all high-level services.

● syslib contains convenient framework for implementing this
○ Implementation details hidden, just provide callbacks

 Ext#9 SpecialFileProducer[3]: major_number=0x0018
 1: vdm_gde access_mode:0660, user_id:0x0074 group_id:0x0037 minor_number:00
 2: vdm_pavp access_mode:0660, user_id:0x0074 group_id:0x018B minor_number:01
 3: vdm_rosm access_mode:0660, user_id:0x0074 group_id:0x018C minor_number:02

ME driver overview: libsrv

Framework for drivers, allows driver to only implement simple callbacks.

● open(),close() implementations return their status,

● read(),write(),ioctl() call a reply function with their result data and status.

● libsrv also allows handling hardware interrupts and power state changes.

typedef int (*ioctl_cb)(int info, int fd, int gtid, int request, void *par);
typedef int (*open_cb)(srvctx_t *ctx, int minor, int gtid, int *p_fd, void *ok);
typedef int (*close_cb)(srvctx_t *ctx, int fd);

int srv_task(srvctx_t *ctx)
int srv_init(srvctx_t *ctx, int major, srvfuncs_t *ops,

 srvcli_t *clients, int maxclients)
int srv_ioctl_reply(srvctx_t *ctx, int fd, int gtid, int ?, int status, void *p
)

Accessing hardware

What’s this?

. Ext#8 MmioRanges[41]:

...
CF base:F00A0000, size:00006000, flags:00000003 RAVDM
D7 base:F5050000, size:00010000, flags:00000003 ICC_CONTROLLER
DF base:F0090000, size:00006000, flags:00000003 FTPM

Accessing hardware

. Ext#8 MmioRanges[41]:

...
CF base:F00A0000, size:00006000, flags:00000003 RAVDM
D7 base:F5050000, size:00010000, flags:00000003 ICC_CONTROLLER
DF base:F0090000, size:00006000, flags:00000003 FTPM

● MMIOs are accessed through ROM library functions
● The MMIO ranges are defined in the manifest
● mmio = (mmio_list_index * 8) | 7

○ Seem familiar to anyone?

Accessing hardware

● MMIOs are accessed through ROM library functions
● The MMIO ranges are defined in the manifest
● mmio = (mmio_list_index * 8) | 7

○ Seem familiar to anyone?

void write_seg_32(int mmio, int offset, int value);
void write_seg_16(int mmio, int offset, short value);
void write_seg_8 (int mmio, int offset, char value);
int read_seg_32 (int mmio, int offset);
int read_seg_16 (int mmio, int offset);
int read_seg_8 (int mmio, int offset);
void write_seg (int mmio, int offset, const void *buffer, int count);
void read_seg (void *buffer, int mmio, int offset, int count);

Accessing hardware

What’s this?

void write_seg_32(int mmio, int offset, int value);
void write_seg_16(int mmio, int offset, short value);
void write_seg_8 (int mmio, int offset, char value);
int read_seg_32 (int mmio, int offset);
int read_seg_16 (int mmio, int offset);
int read_seg_8 (int mmio, int offset);
void write_seg (int mmio, int offset, const void *buffer, int
count);
void read_seg (void *buffer, int mmio, int offset, int count);

The levels below the POSIX-like environment

● Kernel implements IPC primitives and MMIO access
○ Message passing
○ Memory grants
○ DMA buffers
○ MMIO mappings
○ Memory protection

● VFS/Process Manager server implement POSIX calls
○ Accessed through kernel IPC

● Drivers and high level servers implement device files

Message Passing: Basics

● Used to implement server-based “syscalls” and other low level IPC

● Not often directly used by modules

● Mostly MINIX derived

● Fixed message header structure, variable body.

● int ipc_sendrec(int who, syscall_msg *msg)
○ Sends a message, and immediately does a blocking receive
○ Used for server calls

● int ipc_send (int who, syscall_msg *msg)
○ Sends a message, blocks until it is received

● int ipc_notify (int who)
○ Asynchronously sends a notify event to a process

Memory Grants

● Also MINIX derived(safecopies), relatively new feature in MINIX.

● Dynamic resource and memory access control

● Allows a process to register a global name for a memory buffer or MMIO range

● Referenced as (gtid, id) pair
○ Memory grant ID is not global, but always combined with the GTID of the owner process

● Granted to a single process.

● Either refers to
○ Granter memory space

■ (pointer, size)
○ MMIO resource:

■ (MMIO, offset, size)

Memory Grants

● Grantee operations:
○ mg_copyto (MG, offset, data,size)
○ mg_copyfrom(MG, offset, data,size)

● Owner operations:
○ mg_getbuf(MG)
○ mg_revoke(mg)
○ mg_create(MMIO/memory, grantee GTID)

Memory Grants: Indirect Grants

● Refer not to memory but to a grant given to the owner.

● Allow grantee to further delegate grants

● Permissions are the intersection of those in the chain

ME optimizations to MINIX IPC: IOs

● Direct IPC between process and drivers is impossible in MINIX

● ME OS has a solution: kernel is aware of fd’s

● Memory can be granted to fd’s owners

● Messages targeted to GTID 0 go to fd driver.

void io_close(int pid, int fd);
void io_open (int io, int s_gtid, int s_fd,
 int c_gtid, int c_fd, int minor, int sel, int flags);

ME optimizations to MINIX IPC:
select_receive()

● select() was moved into kernel and combined with ipc_receive() as

int select_receive(
 int nfds,
 __int64 *readfds,
 __int64 *writefds,
 __int64 *exceptfds,
 timeval *timeout,
 int from_gtid,
 syscall_msg *msg_out,
 int *have_msg);

 void io_notify(int fd, int notbits);

DMA Locks

● Processes can request MGs to be locked in memory for DMA

● Separate in (device->ram) and out (ram->device) mappings

int sys_mem_dma_lock(
 short out_tid, char out_flags, int out_mg, int out_offset,
 short in_tid, char in_flags, int in_mg, int in_offset,
 int size,
 /*out*/ uint32_t *out_paddr,
 /*out*/ uint32_t * in_paddr,
 /*out*/ int *dl_hnd);

int sys_mem_dma_unlock(int dl_hnd);

ME Hardware

Understanding the address space

● MMIO metadata refers to physical addresses, but HW is nonstandard and configurable

● However,...

$ strings busdrv.mod -n 12
...
HECI1_PCIPF_IBDF
HECI2_PCIPF_IBDF
FTPM_PCIPF_IBDF
SECURE_ENCLAVE_PCIPF_IBDF
RAVDM_PCIPF_IBDF
ATT_PCIPF_IBDF
GEN_PCIPF_IBDF
GPIO_PROXY_PCIPF_IBDF
KERNEL_TIMER_PCIPF_IBDF
...

The bus driver: busdrv

● Power gating

● PCI configuration space access

● Sideband bus access

● Physical resource mapping (BARs, ATTs)

● Old SPT builds have lots of debug strings
● Holds table containing system address and bus map

The table in human readable form

Other information sources on HW

● My ME emulator:
○ https://github.com/peterbjornx/meloader

● Various files in old Intel System Studio versions
○ See Intel VISA: Through the Rabbit Hole (Goryachy, Ermolov) for info on extracting
○ https://github.com/peterbjornx/iss_tools Tools for parsing some of the XML config

● Innovation Engine firmware by HP

● Pentium N and J Series Datasheets
○ Intel® Pentium® and Celeron® Processor N and J Series: Datasheet 3

https://github.com/peterbjornx/meloader
https://i.blackhat.com/asia-19/Thu-March-28/bh-asia-Goryachy-Ermolov-Intel-Visa-Through-the-Rabbit-Hole.pdf
https://github.com/peterbjornx/iss_tools
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/pentium-celeron-n-series-j-series-datasheet-vols-3.pdf

Source: Intel VISA: Through the Rabbit Hole (Ermolov, Goryachy at BlackHat Asia 2019)

Primary Memory Space (64-bit)

Primary Memory Space (64-bit)

PCI: Primary
MEM: ME Local

Processor

● Lakemont microarchitecture
○ “Minute IA”
○ 486 derived
○ Same as Quark MCUs
○ Run-Control documentation is public
○ Supported by OpenOCD

● Modern ISA extensions
○ MSRs
○ CPUID

● Only MSI interrupts used

Custom host bridge:
Minute IA System Agent

● Similar to some Quark devices

● Partial documentation available:
○ Intel® Pentium® and Celeron® Processor N and J Series:

Datasheet 3

● IO address space seems to be unused!

● Implements
○ SRAM / ROM controller
○ IOMMU for fabric->memory requests
○ PCI configuration space access
○ Bus firewall
○ and more

https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/pentium-celeron-n-series-j-series-datasheet-vols-3.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/pentium-celeron-n-series-j-series-datasheet-vols-3.pdf

Hardware Cryptographic Accelerator

● Referred to in various places as OCS

● Hardware implementations of
○ SHA1
○ SHA256
○ SHA256 HMAC
○ AES (2 cores)
○ RSA
○ RC4

● Multiple DMA engines

● Secure Key Storage

Hardware Cryptographic Accelerator
IP blocks (partial)

Crypto: DMA Engines

● At offset 400h in HCU sub devices

● Used for general purpose DMA

● Src/Dst = 0 targets internal buffer

Primary Memory Space (64-bit)

PCI: Fixed?
MEM: ME Local

Host-Embedded Controller Interface (HECI)

● Misleading name
○ also known as Management Engine Interface (MEI)

● Command interface between Host and ME

● Firmware Status Registers
○ Written by ME
○ Read by host.
○ See https://github.com/peterbjornx/meloader/tree/master/periph/gasket/heci
○ and intel/skylake: Display ME firmware status before os boot (Ia511c4f3) · Gerrit Code Review
○ and the MEINFO tool in the vendor package.

https://github.com/peterbjornx/meloader/tree/master/periph/gasket/heci
https://review.coreboot.org/c/coreboot/+/13573/

Primary Address Translation Table

● Maps ME memory cycles onto primary fabric

● Used for both ME and host root spaces

● Not fully understood yet, config is pretty much hardcoded:

Slot | ME Address | Size | Primary address | Control | Descriptions
 0 | F2000000 | 2000000 | 00000000_F2000000 | 12040007 | ME peripherals
 1 | F4600000 | 200000 | 00000000_F4600000 | 12040007 | ME peripherals
 2 | D0000000 | 4000000 | 00000000_00000000 | 080E0003 | UMA
 3 | F7000000 | 800000 | 00000000_F7000000 | 12040007 | TraceHub
 4 | BC000000 | 2000000 | 00000000_00000000 | 01040003 | Host DRAM!
 5 | C0000000 | 2000000 | 00000000_00000000 | 03440003
 6 | C4000000 | 2000000 | 00000000_00000000 | 03440003
 7 | C8000000 | 2000000 | 00000000_C8000000 | 12040003
 8 | CA000000 | 2000000 | 00000000_00000000 | 03040003

Primary Memory Space (64-bit)

PCI: Primary
MEM: ME Local

PCI: Fixed?
MEM: ME Local

PCI: Primary
MEM: Behind ATT

Root spaces

● Some peripherals expose different PCI functions to different hosts

● Example: SPI controller, documented at:
○ Intel® Pentium® and Celeron® Processor N and J Series: Datasheet 3

https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/pentium-celeron-n-series-j-series-datasheet-vols-3.pdf

Sideband Fabric

● Packet switched network

● Endpoint IDs instead of PCI BDF

● Accessible from both ME and host

● PCI-like opcodes:
○ Register R/W
○ Configuration R/W
○ Memory R/W

● Addressed by:
○ (Opcode, Endpoint, Root Space, Function Number, BAR number)

● Security model based around SAI numbers

● Spec partially public as patent application US 2013 0138858A1

Sideband Address Translation Table

Maps sideband devices as memory space

Some sideband addresses for LBG/SPT

Source: Intel VISA: Through the Rabbit Hole (Ermolov, Goryachy at BlackHat Asia 2019)

Dynamic analysis

Slide from Inside Intel Management Engine (Ermolov, Goryachy at 34C3)

https://github.com/ptresearch/IntelME-JTAG/blob/master/Inside_Intel_Management_Engine.pdf

Developing an exploit for CVE-2017-5705,6,7

● Determine stack location

● Craft payload to turn stack variable overflow into arbitrary write

● Determine return pointer address

● Find ROP gadgets

● Turn on debug access / chainload custom firmware

meloader:
WINE for the ME

● Runs unmodified ME usermode binaries under Linux

● Built to run bup, not to be an accurate emulation of HW

https://github.com/peterbjornx/meloader

Features:

● ME binary loader

● Hooks for syslib, romlib

● Syscall stubs

● MMIO peripheral emulation

● Bus emulation

● MMIO passthrough to external programs

● Configurable hardware configuration and initial state

● SVEN decoder

https://github.com/peterbjornx/meloader

meloader as a debugger

● Get meloader to run bup to the vulnerable part of its code

● Develop exploit against bup running in meloader

● Forget to add --one-file-system to rm command and lose homedir

kakaroto: Exploiting Intel's Management Engine – Part 2: Enabling Red JTAG Unlock on Intel ME 11.x (INTEL-SA-00086)

https://kakaroto.homelinux.net/2019/11/exploiting-intels-management-engine-part-2-enabling-red-jtag-unlock-on-intel-me-11-x-intel-sa-00086/

https://github.com/peterbjornx/me_sa86_exploit

https://github.com/peterbjornx/me_sa86_exploit

Getting JTAG access

● ExI USB3 transport could work but not from cold boot

● ExI BSSB adaptor

https://eu.mouser.com/ProductDetail/Intel/EXIBSSBADAPTOR?qs=byeeYqUIh0P5fUdWOCXn8A%3D%3D

Expensive: € 456,30

https://eu.mouser.com/ProductDetail/Intel/EXIBSSBADAPTOR?qs=byeeYqUIh0P5fUdWOCXn8A%3D%3D

System boot process

ME Boot Process

● Microkernel bootstrap problem: the bup module
○ Has integrated versions of server functionality.
○ Had very high privileges up to ME 12
○ Is responsible for starting host CPU.
○ Starts all servers

Image credit: “Intel ME: The Way of the Static Analysis.” Ermolov, Goryachy, Sklyarov (2017)

Host Boot Process

Microcode Reset
Vector

RAM
Init EFI

Host Boot Process: Boot Guard

Micro
code

Reset
Vector

Boot Guard
ACMHost CPU

Host Boot Process

Micro
code

Reset
Vector

Boot Guard
ACM

Signal
PMC

Host
init

Deassert
CPU RST

Update
PMC
FW

CPU
Power

Up

Host CPU

CSME

PMC

The Power Management Controller

● 8051 based MCU

● Runs CMX RTOS “Copyright (c) CMX Co. 1999. All Rights Reserved”

● On SPT, Firmware in ROM but patches written from CSME

● On LBG, Firmware loaded from CSME

● Presents register based interface to the CSME

● Controls power gating and reset of IP blocks and CPU

Host Initialization: ME tasks

1. Boot guard configuration load

2. Clock controller setup

3. PMC CPU power ungate

4. PSF Fabric configuration

5. CPU out of reset

Getting to the minimal viable
implementation

Lenovo T460 Linux system

PMC CSME

CPU

IP
blocks

ExI
BSSB

ExI
JTAG

Linux 32-bit x86 process

bup

romlib syslib

glibc

hwifd

ipccliOpenIPC

socketIntel
SVT-CCA

meloader

io trace

Linux Binary

ME Binary

Python Script

HW block

DEMO: meloader boots real HW

Boot Guard Configuration

Valid?Load
Fuses

Load
file Valid?

Upload
BG profile to

Secure Enclave

yes

no

no

yes

Upload
BG disabled to
Secure Enclave

Boot Guard Configuration

CPU

● Profile in MSRs

● ACM verifies

● Result to MMIO device

● Result to MSRs

CSME

● Profile in Secure Enclave device

● Respond to status of Secure Enclave

● Shutdown timer in software

Boot Guard Configuration
Minimal viable implementation

Boot Guard Configuration
Minimal viable implementation

● Also opens up host-side firmware replacement for machines with Boot Guard enabled

Future goals

● Escalate to Ring 0
○ Either through “modchip” on debugger interface or
○ through kernel vulnerability.

● Implement bootloader for custom firmware

● and minimal bringup firmware.

● Add ExI support to openocd

● Clone Intel CCA

● Research post-boot power management: Sleep, Reboot, Shutdown

● Research PMC firmware

● Research other peripherals

Acknowledgements

● @noopwafel for lending me her Intel SVT-CCA

● Igor Skochinsky for information that helped me get started on this project

● Mark Ermolov for helping me out when I got stuck

● RevSpace (The Hague hackerspace) for access to a well-equipped electronics lab.

Questions?

Cloning the CCA

Debugging Intel systems:
BSSB physical layer

Debugging Intel systems:
BSSB physical layer

BSSB waveforms: Sync

Plugged in: 0.6V

Unloaded: 1.1V

Plugged in: 1.1V

BSSB_DO (to DUT) sampled on BSSB_CLK falling edge, data order LSb first
Sync word is 0x0001

BSSB waveforms: First DUT->Host packet

BSSB_DI (from DUT) sampled on BSSB_CLK rising edge, data order LSb first

BSSB packets

● 64 bytes long

● Little Endian

● Same protocol as USB based ExI
○ CCA does handle some vendor requests

Outbound ExI packets

● DUT to Host

● Payload length only sent if E(xtended Header) is set

Inbound ExI packets

● Host to DUT

● Payload length only sent if E(xtended Header) is set

100C cookie_value

1010 tstamp_read
1015 atol1
101A atol2
101F atoll
1024 memchr
1029 memcmp
102E memcpy
1033 memmove
1038 memrchr
103D memset
1042 strcat
1047 strchr
104C strcmp
1051 strcpy
1056 strlen
105B strncat

1060 strncmp
1065 strncpy
106A strnlen
106F strrchr
1074 strstr
1079 strtol1
107E strtoll
1083 strtol2
1088 memcasecmp
108D strcasecmp
1092 strncasecmp
1097 itoa
109C itoa
10A1 utoa
10D3 bw_clr_lsb
10D8 bw_clr_msb
10DD bw_set_lsb
10E2 bw_set_msb
10E7 bw_find_hi_lsb
10EC bw_find_hi_msb
10F1 bw_find_lo_lsb
10F6 bw_find_lo_msb

10FB bw_count_ones
1100 bit_fill_clear
1105 bit_fill_set
110A bit_set
110F bit_clear
1114 bit_range_set
1119 bit_range_clear
111E bit_test
1123 bit_and
1128 bit_or
112D bit_inv
1132 bit_xor
1137 bit_find_set_lsb
113C bit_find_set_msb
1141 bit_find_clr_lsb
1146 bit_find_clr_msb
114B bit_csub_set_lsb
1150 bit_csub_set_msb
1155 bit_ssub_clr_lsb
115A bit_ssub_clr_msb
115F bit_fsub_set_lsb
1164 bit_fsub_set_msb

1169 bit_fsub_clr_lsb
116E bit_fsub_clr_msb
1173 bit_count_sub_ones
1178 bit_sc_and
117D base64_size
1182 base64_dec
1191 shl64
1196 shr_s64
11A0 shr_u64
11AA mul_s64
11AF div64
11B4 mod64
11B9 write_seg_32
11BE write_seg_16
11C3 write_seg_8
11C8 read_seg_32
11CD read_seg_16
11D2 read_seg_8
11D7 write_seg
11DC read_seg
11FA crc8
1209 memcmp_ct

ROM API
Entrypoints

Useful filenames

